Effects of surface interactions on heterogeneous ice nucleation for a monatomic water model.

نویسندگان

  • Aleks Reinhardt
  • Jonathan P K Doye
چکیده

Despite its importance in atmospheric science, much remains unknown about the microscopic mechanism of heterogeneous ice nucleation. In this work, we perform hybrid Monte Carlo simulations of the heterogeneous nucleation of ice on a range of generic surfaces, both flat and structured, in order to probe the underlying factors affecting the nucleation process. The structured surfaces we study comprise one basal plane bilayer of ice with varying lattice parameters and interaction strengths. We show that what determines the propensity for nucleation is not just the surface attraction, but also the orientational ordering imposed on liquid water near a surface. In particular, varying the ratio of the surface's attraction and orientational ordering can change the mechanism by which nucleation occurs: ice can nucleate on the structured surface even when the orientational ordering imposed by the surface is weak, as the water molecules that interact strongly with the surface are themselves a good template for further growth. We also show that lattice matching is important for heterogeneous nucleation on the structured surface we study. We rationalise these brute-force simulation results by explicitly calculating the interfacial free energies of ice and liquid water in contact with the nucleating surface and their variation with surface interaction parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free energy landscapes for homogeneous nucleation of ice for a monatomic water model.

We simulate the homogeneous nucleation of ice from supercooled liquid water at 220 K in the isobaric-isothermal ensemble using the MW monatomic water potential. Monte Carlo simulations using umbrella sampling are performed in order to determine the nucleation free energy barrier. We find the Gibbs energy profile to be relatively consistent with that predicted by classical nucleation theory; the...

متن کامل

The Many Faces of Heterogeneous Ice Nucleation: Interplay Between Surface Morphology and Hydrophobicity.

What makes a material a good ice nucleating agent? Despite the importance of heterogeneous ice nucleation to a variety of fields, from cloud science to microbiology, major gaps in our understanding of this ubiquitous process still prevent us from answering this question. In this work, we have examined the ability of generic crystalline substrates to promote ice nucleation as a function of the h...

متن کامل

Dynamics of ice nucleation on water repellent surfaces.

Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechan...

متن کامل

Molecular simulations of heterogeneous ice nucleation. II. Peeling back the layers.

Coarse grained molecular dynamics simulations are presented in which the sensitivity of the ice nucleation rate to the hydrophilicity of a graphene nanoflake is investigated. We find that an optimal interaction strength for promoting ice nucleation exists, which coincides with that found previously for a face centered cubic (111) surface. We further investigate the role that the layering of int...

متن کامل

BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation

A new optical freezing array for the study of heterogeneous ice nucleation in microliter-sized droplets is introduced, tested and applied to the study of immersion freezing in aqueous Snomax suspensions. In the Bielefeld Ice Nucleation ARraY (BINARY) ice nucleation can be studied simultaneously in 36 droplets at temperatures down to −40 C (233 K) and at cooling rates between 0.1 and 10 K min. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 141 8  شماره 

صفحات  -

تاریخ انتشار 2014